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Back to the chain matrix:

V1=AV2—BIZ IIZCVZ_DIZ

(5-24)
A, B, C, and D are called the chain parameters; their matrix
A B
r— <
[C D] (5-25)
I I
o e ) e
V2 12=0 _12 V2=0 VZ 12=0 —12 V2=0
(5-27)
Hence, T can be found from the schemes shown in Fig. 5-11
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£ Figure 5-11 Schemes for calculating the
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chain parameters of a two-port.



ECE 580 — Network Theory Two-Port Networks 55
Sec. 5.1 Temes-Lapatra

Integrator:

C
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I
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(J V2

Vi=-sRCV,+ 0.1,
L=V, /R=-sCV,+0.1,

-sRC 0 R O
T = =sC
-sC 0 1 0

Cascaded integrators:

R2
7, - szcs[ ¢

0 eevl !
ol =CRED R o

NOTE: B=D=0 means buffered two-port!
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Example 5-3 Find Y and Z for the circuit of Fig. 5-7a.

From Fig. 5-7b (where we have chosen for simplicity V; = 1 V), by inspection

I 1 I 1
y“éVl]=”=SCI+R —“Zlél/j=15=_i

and from Fig. 5-7¢, with V, =1V,

12 1 I3 1
)'lzé‘l;:=1f=—R }'22éV2=1§=SC2+R
1
SCl + R
Hence Y = :
o SCZ + R
Therefore
1 1 1 s(Cy + C
Ay = (sCl + R)(s(‘z + R) -7 =s2C,C, + ( )R 2)
sC 2t 1/5 1/R
Ay Ay
-17 Z=
and, by (5-17), LR SC!j’ UR
AY Ay
R
o ANAA— . 1955
: S
: e
(a)
It R 1,

T ;
© :

Figure 5-7 Simple RC two-port and the calculation of its admittance parameters.

Of course, Z can also be obtained directly, using the method illustrated in Fig. 5-4. For
our example, this gives

Vi 1

T 1
SGrp
sk oo

CHME

SRC, + 1

Z11

T $’RC,C; +5(Cy + C1) ~ 53C,Cy +5(Cy + Co)/R

sC2 + 1/R
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Example 5-4 Find Z and Y for the two-port shown in Fig. 5-8.
With an input current I, = 1 A, from (5-2) and Fig. 5-4b,

sLi R R, /sC s 1/s
S 1 Ry Ra = e i USe
SIS TIR, Bl R i
e ¢ 0 wa 1

2SRk sC dblls v

Similarly, from (5-3) and Fig. 5-4c,

. B
R L IsC. sk
sL, R R, /sC
d i pr2e iy 2423 a2 g
- T TSR R TRc
1 2 <
Hence, A,=1-— Sidds

(s+12  s+25+1
and by (5-19)

222_52+25+1

yll:rz- s+ 2s
N i 212_ s+ 1
Y12 =Y AL 2

Zaiio o8 25 k]

e e

Again, y,,; will be checked using the scheme of Fig. 5-5b. For V; =1V,

1
=J! —
Vi1 1 SR +*77 1

sLi + Ry 1/R> + sC + 1/R3 + 1/sL,

2 1 2425+ 1

2 b 1 SRR
s+1  24s+1/s

as before.
L, = L,=

ez * -4 -0

Figure 5-8 RLC two-port example.

Symmetric, reciprocal constant-resistance twoport.
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Example 5-5 Find the z;; for the two-port shown in Fig. 5-9.
From Fig. 5-4, we obtain

Z,(Z5 + Z,4)

= + == = =

e Py

ORI ey T 00

Hae 2l m v gy
_ Z4(Zy+ Z,)
2o =
7k T,

The reader should fill in the details.

Hitherto, all two-port examples contained reciprocal circuits. Hence, by (5-5),

Zy, = z,, held, and so did
Y12 = V21 (5-21)
Equation (5-21) can be obtained either from Egs. (5-5) and (5-19) or from
Fig. 1-6b. For circuits containing active elements, (5-5) and (5-21) need not hold.

Example 5-6 For the circuit of Fig. 5-10a, Y can readily be found using the scheme of
Fig. 5-5. With the output port short-circuited and V; = 1 V (Fig. 5-10b),
1 1 G 1

y =11=~+f y =I’:-—— =
11 1 Rl Rz 21 2 R3 R2

whereas if the input port is short-circuited and V, = 1 V (Fig. 5-10c),
1 1 1
)’12=1%=—R2 and }'22=R3+F2

Here, y;, # v, except if G =0 or R; — oo, that is, if the active element (which here is a
voltage-controlled voltage source) is removed from the circuit.

I, R, I,

1} R, I
> AN -
R,
L |
L ,VQ x
GV,
(b)
’12 R, ,22
> VWA -
R, R, V=1V

(c)

Figure 5-10 (a) Nonreciprocal two-port; (b) and (c) calculation of Y for the two-port.
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R
o- ] VWV l -0
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(®)
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(c)

Figure 5-7 Simple RC two-port and the calculation of its admittance parameters.

Example 5-7 For the two-port of Fig. 5-7a, using Fig. 5-11, we find

1 1 .,
A= ( ) - (—JLCL ) =sRC, + 1
JVi=1V

v R + 1/5C,
I,=0
B=(—i) =R
12 V,1=1V
1
O P
v, I,=1A 71[§C2
doai 'R+ 1/sC, [ h=1A
12=0

1
e T S TP o e )

(1/sCy + R + 1/sC,) R + 1/sC,

1 1/R T
d D=|—-—— p| el Skt = sR
an ( 12)“=1A (sC,+1/R) SRCy + 1

V=0

When (5-26) is used in conjunction with the values found earlier for the Z and Y of this
circuit, the above results can be confirmed.

Check:

Example 5-8 For the circuit of Fig. 5-7q,
AT = (SRCZ + 1)(SRC1 + 1) T R(SZRcl CZ + SCI + SCZ) =1

as expected.
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Example 5-9 For the circuit of Fig. 5-10a, the chain parameters can be found from the
admittance parameters calculated earlier, for example:

7 _y33= - 1/R3+ l/R2 B R2+Ri,,3‘
V21 —G/R3; —1/R, GR; + R;
RN e B R Y L o
Y21 —G/R3; —1/R; GR; + R;
Cas S VeSSVl Sidai
Y21 Y21
_ _ (I/Ry + 1/R;)(1/R5 + 1R} 5 1
—G/R3 - l/R2 R2
_(Ri+ R)(R; + R3) 1
(GRZ + R3)R1R2 RZ
b THR YR, TR RK,
Y21 —G/R; — 1/R;,  R{(GR; + Rj)
Hence
SRl b aida o Yl G | L), W B el
AD — BC = ) . ATl R,
(GR, + R3)2
or, after simplifications,
R,

Hence, AD — BC = 1 holds only if Ry = o or G — 0, that is, only if the controlled source is
removed from the circuit.

Since Eq. (5-4) can be rearranged six different ways with two parameters on
the left-hand side and two on the right-hand side, we can define six different sets of
two-port parameters. The reader should consult Ref. 1, table 17-1, for a listing of
these parameters and for the formulas needed to convert from one set to another.
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Transfer Functions for Terminated Twoports

Transfer Function: Possible output/known input (voltage or current. For a two-port, we
may have

Voltage ratio, voltage gain: Ay(s) = Vi(s) / E(s)
Transfer Admittance: Yr(s) =1(S) / E(s)
Transfer Impedance: Z1(s) = Va(s) / 1(s)

Current Ratio, current gain: Ai(s) =Ix(s) / I(s)
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5-5§ TRANSFER FUNCTIONS

When the two-port is excited by a generator and terminated by a load, as il-
lustrated in Fig. 5-1, the signal-transfer properties of the complete circuit can be
described by an appropriately chosen transfer function. We define the transfer
function as the ratio of an output variable (voltage or current) to a known input
quantity (generator voltage or current).t Since most practical generator and load
impedances are essentially resistive, we shall restrict our discussions to resistor-
terminated reactance two-ports.

In the simplest (and least useful) situation, both terminations are zero or
infinite. Then we have one of the four configurations depicted in Fig. 5-18. These
circuits are called unterminated (unloaded) two-ports. The proper choice of a trans-
fer function for any of these circuits is obvious and unique. For example, for the
circuit of Fig. 5-18a, the output variable must be V, since I, = 0; the known input
quantity is the generator voltage E. Hence, we must choose the voltage ratio Ay,
defined by

Vi(s
a5 & 22 (5-84)
[The reader should keep in mind the dual interpretation of the variable s. Thus, for
s = jo, Ay(jw) may represent the ratio of the steady-state sine-wave voltage pha-
sors at the output and input. In general, however, A,(s) is the ratio of the Laplace-
transformed output signal v,(t) and generator signal e(t) for a two-port initially
free of stored energy.]
Similarly, for the circuit in Fig. 5-18b the transfer function must be the trans-
fer admittance

I1,(s)
Ve o 21 5-85
T(S) E(S) ( )
For the circuit of Fig. 5-18c¢, the transfer function is the transfer impedance
Va(s)
Z O 5-86
T(S) I(S) ( )

+ Here all quantities are assumed to be functions of s, not r.
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I, I,

——=—o0

+

E Va

—————— o
(a)

E Al

(b)

——— 0

+

1 Va

—o

(d) * Figure 5-18 Unterminated two-ports.

Finally, for the circuit of Fig. 5-18d, the transfer function is the current ratio

I5(s)
Als) & 27 5-87
I(S) I(S) ( 8 )
The transfer functions can readily be calculated from the two-port parameters
Z or Y or T. For example, for the circuit of Fig. 5-18a, from (5-9)

Vi=zuly + 20,1, =2,1, o=z + 25,1, = 24,1, (5-88)

Vo
Hence A, =2=2= “t (5-89)
£ K Ty
Alternatively, from (5-10)
I, =y + y32 V=0 (5-90)
which gives
fRent Y12
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Or, from (5-24),
Vl = AV2 T BIZ — AVZ (5'92)

= (5-93)

1
Ay, = s
so that v 2

V,
Vl

For the circuit of Fig. 5-18b, from (5-9),
V1=21111+21212=E V2=21211+222]2=0 (5‘94)
Solving (5-94) for I, gives

Ezy, 212
g E E RN (5-95)
. 211222 — 232 A,
I z
V- ek N ¥ 5-96
so that ¥ - T (5-96)
Alternatively, from (5-10)
I, =y12V1 + y22 Va = y1,E (5-97)
1
so that Yo = fz = Y3 (5-98)
Or, from (5-24),
V,=E=AV,— Bl, = —BI, (5-99)
which gives
I, 1
=== - 5-100
Yp=2=-1 (5-100)
directly.
Exactly analogous manipulations give
V. y 1
zr=lag,o tu_ g (5-101)
for the circuit of Fig. 5-18¢ and
212812 1
S e g 5-102
: 222 I D ( )

for the circuit of Fig. 5-18d.

If the two-port has a single resistive termination, it is called a singly terminated
or singly loaded two-port. Four possible circuits for such a two-port are illustrated
in Fig. 5-19. Notice that two other possible circuits exist which may be obtained
by replacing the generator and its internal impedance R by its Norton equivalent
in the circuit of Fig. 5-19b or by its Thevenin equivalent in Fig. 5-19d. Their
transfer functions differ only by a factor R from those of Fig. 5-19b and d, and
hence they do not merit separate treatment.
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(@)

(b)

N

(d) Figure 5-19 Singly terminated two-ports.

For the circuit of Fig. 5-19a, we can choose 4, = V, /E as the transfer func-
tion. (Again, a trivially different choice is to select Y; £ I, /E;since I, = —V, /R,
here Y. = — A4, /R))

For the circuit of Fig. 5-19b, the transfer function may be selected as
Y, = L/E [or as A; = I,/I = I,/(E/R) = RY, if the Norton generator model is
substituted].

For the circuit of Fig. 5-19¢, we can use A, =1,/I or, as trivial variant,
Zr=V,/ = —I,R/I = —RA,. For the circuit of Fig. 5-19d, the transfer func-
tion can be Z; = V,/I or if the Thevenin equivalent is used for the generator,
Ay, =V,/E=V,/(IR) = Z,/R.

The transfer functions of the singly loaded two-port can also easily be found
in terms of the two-port parameters and R, as will be shown next. For the circuit
of Fig. 5-19a, combining the branch relations

= E V, = —RI, (5-103)
and the two-port relations (5-9), we get

21111+21212=E 21211+(222+R)12=0 (5'104)
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which gives

z,,E
i 5-105
27 —zy425+ 23, — 24 R ( )
V. —I,R z:, R
so that Ay =2=—"2"= 12 5-106
e b E A, ¥z R ( )
Alternatively, from (5-103) and (5-10)
I, =y12Vi + y22V, = y12E — yaRI, (5-107)
which gives
E —I,R — R
e e S e (5-108)
1+y,,R E 1+ y,,R
Finally, from (5-24), using (5-103), we have
V1=E=AV2_312=_AR12_BIZ
- _E LRk (5-109)
> AR+ B e B AR TR
Similar calculations performed for the circuit of Fig. 5-19b give
1 —zZ y -1
Y, 42=_ "2 _ 12— _ 5-110
LREs Ao T2 Ryt R B £ DR ( )
For the circuit of Fig. 5-19¢,
1 -z y —1
A 22 = 12 _ e = 5-111
Lo on s iR RS ER D ( )
Finally, for the circuit of Fig. 5-19d,
V; R — R R
Zya2e fan o Sme s (5-112)

Y FRTARLY RN

The most important and most widely used circuit is the doubly terminated (or
doubly loaded) reactance two-port, illustrated in Fig. 5-20. Depending on whether
Thevenin or Norton model is used for the generator and whether V, or I, is used
as output variable, any one of the four transfer functions 4,, A;, Z,, and Y; can
be used to describe the transmission properties of the circuit. If the circuit of
Fig. 5-20a is chosen, for example, i.e., a Thevenin generator model, and V, as
output variable, A, is the proper transfer function. Now the branch relations are

Vi =E — Rgl, V,=—-1,R, (5-113)
They can be combined with the two-port relations (5-9) to give

(zir + Re)ly + 221, =E 250 + (235 + R ), =0 (5-114)
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R; I, I,
- +
E Vl VZ RL
(a)
12
+
l RG VZ RL
(b) Figure5-20 Doubly terminated two-ports.

Solving (5-114) for I, gives

—leE
8= : 5-115
LA R 2 ROERR, ( )
ARG o Zi R
Henc A tAes R R U2 lil mdithie Sotle
g G TR e TR S e (-Hg)

Carrying out the calculations in terms of the y,;, that is, combining and

solving (5-113) and (5-10), gives
A —y12R,
V

& AYRGRL + y11Rg + j’;zRLﬁ

(5-117)

Finally, to express 4, in terms of the chain parameters, we combine and solve
Eqgs. (5-113) and (5-24). This results in -

A R,

SPSUAR 4+ B4 CRy R+ DR,

(5-118)

As will be shown in Chap. 6, the design of a doubly terminated two-port is
expediently performed using a different transfer function H(s), which is related to

Ay(s) by
ol Rl AR R
H(s) £ - RV, VRi/Rg (5-119)

2 24,
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Design of passive two-ports: filter, equalizer (gain or phase).

Delay line

Low-pass filter

X

Specs — Transfer functions = Z, Y, T, ... — circuit
Example:

Calculate Zt = V, / I for the circuit shown using its z;; parameters.
Solution:

Since Zt = zpR / (z11 + R), we first find

2 = (257 +1)/5(s> +2) = 1/25,5s =0
2, = (Vo /1) for =0 — z;, = 1/(s* + 2s), s—

Substituting gives

Zr=1/ (s’ + 28> + 2s+1)

Checks: for s=0, Z1(s) =1; true from circuit diagram. For s— o, Z(s) — s, also obvious
from circuit.

wis

: LI ¢——0

+

3R l l 3 VZ
Figure 5-25 Reactance-ladder re-

(d) alization example.
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Example:

Find the z; and Al for the circuit shown. The results are:

_ 3 (D’ +3)
2= 1) 2= T +2)
L w3
Tz, ($S+D(sP+3)

~
|
n"
O\
|
I
|
;
—
~

(c)

Again, testing for z=0 shows that zy,= -z;, = 1/(2s/3) and Al=-1 are correct, as are z,, —

3

3 -
S, Z12—> s—3andAI—> S_4



